翻訳と辞書
Words near each other
・ Sei-Kyo Maru
・ Seia
・ Seia, São Romão e Lapa dos Dinheiros
・ Seiad Valley AVA
・ Seiad Valley, California
・ Seiaichūkōmae Station
・ Seian University of Art and Design
・ Seibal
・ Seiban Kyūryō Prefectural Natural Park
・ Seibel
・ Seibel grapes
・ Seibel S-4
・ Seiberg duality
・ Seiberg-Witten map
・ Seiberg–Witten invariant
Seiberg–Witten theory
・ Seiberling Mansion
・ Seiberling Rubber Company
・ Seibersbach
・ Seibersdorf
・ Seibert
・ Seibert Hall
・ Seibert Lake (Alberta)
・ Seibert Q. Duntley
・ Seibert Stadium
・ Seibert Straughn
・ Seibert, Colorado
・ Seibertsbach
・ Seibi
・ Seibi Gakuen College


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Seiberg–Witten theory : ウィキペディア英語版
Seiberg–Witten theory

In theoretical physics, Seiberg–Witten theory is a theory that determines an exact low-energy effective action (for massless degrees of freedom) of a N=2 supersymmetric gauge theory—namely the metric of the moduli space of vacua.
==Seiberg–Witten curves==
In general, effective Lagrangians of supersymmetric gauge theories are largely determined by their holomorphic properties and their behavior near the singularities. In particular, in gauge theory with ''N'' = 2 extended supersymmetry, the moduli space of vacua is a special Kähler manifold and its Kähler potential is constrained by above conditions.
In the original derivation by Seiberg and Witten, they extensively used holomorphy and electric-magnetic duality
to constrain the prepotential, namely the metric of the moduli space of vacua.

Consider the example with gauge group SU(n). The classical potential is
This must vanish on the moduli space, so vacuum expectation value of φ can be gauge rotated into Cartan subalgebra,
so it is a traceless diagonal complex matrix.
Because the fields φ no longer have vanishing Vacuum expectation value. Because these are now heavy due to the Higgs effect, they should be integrated out in order to find the effective N=2 Abelian gauge theory. This can be expressed in terms of a single holomorphic function F.
In terms of this prepotential the Lagrangian can be written in the form:
} \mathcal^2 \,|}}
The first term is a perturbative loop calculation and the second is the instanton part where k labels fixed instanton numbers.
From this we can get the mass of the BPS particles.
One way to interpret this is that these variables a and its dual can be expressed as periods of a meromorphic differential on a Riemann surface called the Seiberg-Witten curve.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Seiberg–Witten theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.